\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-IV(OLD) - EXAMINATION - SUMMER 2019

Subject Code:140001

Date:09/05/2019

Subject Name: Mathematics-IV

Time:02:30 PM TO 05:30 PM
Total Marks: 70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find all roots of $\sqrt[3]{8 i}$.
(b) 1) Find real and imaginary part of $f(z)=z^{2}+4 z$. Also, calculate the value of f at $z=1+i$.
2) Show that $f(z)=\frac{\frac{\operatorname{Im}(z)}{|z|} ;}{}, \begin{array}{ll}z \neq 0 \\ 0 ; & z=0\end{array}$ is not continuous at the origin.
Q. 2 (a) Find the image of the region $|z|<1$ under the transformation $w=2 z-i$. Sketch the region and its image.
(b) Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic in some domain D and find a harmonic conjugate of $u(x, y)$.

OR

(b) If $f(z)$ is an analytic function of z, show that

$$
\left(\frac{\partial}{\partial x}|f(z)|\right)^{2}+\left(\frac{\partial}{\partial y}|f(z)|\right)^{2}=\left|f^{\prime}(z)\right|^{2}
$$

Q. 3 (a) Evaluate $\int_{0}^{2+i} z^{2} y z$ along the line $y=x / 2$
(b) Evaluate:

1. $\oint \frac{z}{z-}$, over the contour c, where c is the circle $|z|=1$.
2. $\oint_{\frac{2}{(1-z)^{3}}} d z$, counterclockwise over C , where $\mathrm{C}:|z|=2$
3. $\oint \frac{e^{z}}{(z-1)(z-3)} d z$, counterclockwise over C , where $\mathrm{C}:|z|=2$

OR
Q. 3 (a) Determine the Laurent series expansion of $f(z)=\frac{1}{(z+1)(z+3)}$ valid for
a) $|z|<1$
b) $1<|z|<3$
(b) Using Newton's divided difference formula, compute $f(10.5)$ from the following data:

$\mathrm{x}:$	10	11	13	17
$\mathrm{f}(\mathrm{x}):$	2.3026	2.3979	2.5649	2.8332

Q. 4 (a) Find a real root of the equation $x^{3}+4 x^{2}-1=0$, lies between 0 and 1 by using bisection method correct to decimal places.
(b) Evaluate $\int_{0}^{3} \frac{d x}{(1+x)}$ with $\mathrm{n}=6$ by using Simpson's $3 / 8$ rule and hence calculate 07 $\ln 2$.

OR
Q. 4 (a) Solve the following system of equation using partial pivoting by Gauss Elimination method.

$$
\begin{aligned}
8 x_{2}+2 x_{3} & =-7 \\
3 x_{1}+5 x_{2}+2 x_{3} & =8 \\
6 x_{1}+2 x_{2}+8 x_{3} & =26
\end{aligned}
$$

(b) Solve the following system of equations by using Gauss-Seidel method.

$$
10 x+y+z=6 ; x+10 y+z=6 ; x+y+10 z=6
$$

Q. 5 (a) Using the power method, find the largest eigenvalue of the matrix 07 $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$
(b) Apply Runge-Kutta fourth order method to find an approximation value of y $\mathbf{0 7}$ when $\mathrm{x}=0.1$ in step of 0.1 if $\frac{d y}{d x}=x+y^{2}, y(0)=1$

OR

Q. 5 (a) Evaluate the integral $\int_{0}^{1} \frac{d x}{(1+x)}$, by Gauss three point quadrature formula.
(b) Solve the differential equation $\frac{d y}{d x}+x y=0 ; y(0)=1$, from $x=0$ to $x=0.25$ using Euler's method taking step size 0.05 .

